Energy storage price targets to enable energy arbitrage in CAISO

Pedro Barba (M), Raymond H. Byrne (F), Tu A. Nguyen (SM)
Sandia National Laboratories, Albuquerque, NM.

Abstract – The potential annual revenue of a generic battery energy storage system (BESS) participating in the CAISO day-ahead energy market was analyzed for 2,145 nodes over a seven year period (2014-2020). This data was used to estimate the break-even capital cost for each node as well as the cost requirements for several internal rate of return (IRR) scenarios.

Revenue optimization formulation:

\[
\max \sum_{t=1}^{T} \left[(P_t - C_d) - (P_t + C_r) q^D_t \right] e^{-r_t t}
\]

where

- \(S_t = \gamma_t S_{t-1} + \gamma_t q^D_t - q^R_t \)
- \(q^D_t \) is the quantity of energy discharged at time \(t \)
- \(q^R_t \) is the quantity of energy recharged at time \(t \)
- \(\gamma_r \) is the conversion efficiency
- \(P_t \) is the price of electricity (LMP) at time \(t \)
- \(C_d \) is the cost of discharging at time \(t \)
- \(C_r \) is the cost of recharging at time \(t \)
- \(r_t \) is the interest rate over one time period

The break-even cost formulation for each node:

\[
\text{NPV[revenue]} = \text{NPV[total cost]}
\]

\[
\text{CAP} = \frac{\text{GAF} \times \text{REV}}{1 + k \times \text{AF}^2}
\]

where

- \(\text{GAF} \) is the geometric average factor
- \(\text{REV} \) is the revenue
- \(k \) is the discount rate
- \(\text{AF} \) is the arithmetic factor

System parameters and case studies:

<table>
<thead>
<tr>
<th>Value</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(P_{\text{max}}), maximum power rating (MW)</td>
</tr>
<tr>
<td>(S)</td>
<td>maximum state of charge (MWh)</td>
</tr>
<tr>
<td>(q^R)</td>
<td>maximum quantity that can be bought/recharged in a period (MWh)</td>
</tr>
<tr>
<td>(q^D)</td>
<td>maximum quantity that can be sold/discharged in a period (MWh)</td>
</tr>
<tr>
<td>(\Delta t)</td>
<td>(hours)</td>
</tr>
<tr>
<td>1.0</td>
<td>(\gamma_r), storage efficiency (fraction)</td>
</tr>
<tr>
<td>0.85</td>
<td>(\gamma_c), conversion efficiency (fraction)</td>
</tr>
<tr>
<td>1</td>
<td>(C_d), cost of discharging at time (t) (SMWh)</td>
</tr>
<tr>
<td>0</td>
<td>(C_r), cost of recharging at time (t) (SMWh)</td>
</tr>
<tr>
<td>(r_t)</td>
<td>interest rate over one time period (percent)</td>
</tr>
</tbody>
</table>

IRR = 2.5%, 5%, 7.5%, 10%
Annual revenue growth rates (g) = 0%, 3%, 6%
Project lifetimes (T) = 10 and 15 years
\(k = 2\%

Conclusion:

Using arbitrage as the only revenue stream for the BESS, capital costs need to be reduced by about 80% of the current cost for a battery system of the same type in order to make a reasonable rate of return.

Future work:

We are currently looking at additional revenue sources (i.e. frequency regulation, spinning and non-spinning reserves, as well as flexible ramping product) for the BESS in order to increase its revenue streams.

This research was funded by the U.S. Department of Energy Office of Electricity Energy Storage Program under the guidance of Dr. Imre Gyuk.