RESEARCH MOTIVATION

- Effective coordination of distributed energy resources (DERs) in the presence of operational uncertainties is critical to harvesting their potential benefits.

- Variability and uncertainty associated with renewable generation (RG) present challenges to system operation.

- Loss of life of the battery energy storage system (BESS) needs to be explicitly modeled.

- Approximate dynamic programming (ADP) is a broad umbrella of techniques and algorithms for solving large and complex stochastic sequential decision-making problems.

- Central to ADP is making decisions based on value function approximation to provide a scalable and effective approximation to exact value functions.

- Two iteration strategies: value iteration and policy iteration.

- When problem states and actions become large, existing ADP methods may become less efficient.

VALUE ITERATION METHOD

- An innovative deep deterministic policy gradient (DDPG) approach is proposed for optimal DER dispatch with BESS loss of life explicitly modeled.

- DDPG is in the category of action-dependent heuristic dynamic programming, a type of ADP.

POLICY ITERATION METHOD

- Objective Function

 \[
 \min (\text{BESS operation and maintenance cost} + \text{energy cost})
 \]

- **Models & Constraints**
 - BESS power and energy limits
 - BESS energy state dynamics
 - BESS power output limits
 - BESS startup and shutdown time
 - Microgrid power balancing
 - Microgrid load from forecast and forecast error

CONCLUSIONS

- ADP methods are promising for power system scheduling and dispatch under uncertainties.

- Utilizing the underlying properties of the problem in control design can help enhance exploration capability and thereby learn the dispatch policy more efficiently.

- The proposed ADP methods were validated and evaluated through case studies in both deterministic and stochastic environments.

- The results showed that the proposed approach outperforms the existing ADP approaches in terms of both optimization gap and solution time.

- Case studies also substantiate that incorporating the BESS life loss model into control design can maximize benefits while expanding the BESS service life.

Acknowledgements

This work is supported by the U.S. Department of Energy, Office of Electricity through Energy Storage Program. We are grateful to Imre Gyuk for providing financial support and leadership on this and other related work at Pacific Northwest National Laboratory.

References
