Port Electrification Project
Richard Fioravanti\(^1\), Khash Mahani\(^1\), Steven Ellis\(^1\), and James Ellison\(^2\)
\(^1\)Quanta Technology
\(^2\)Electric Power Systems Research Dept., Sandia National Laboratories

Project Objectives & Goals

Goal of project
By performing case studies on port electrification, to gain deeper insight into the costs and benefits of electrification for military and commercial ports in the U.S.
- including a better understanding of the potential role of energy storage

Project Objective
To perform case studies on three East Coast ports to understand the costs and benefits of port electrification
- while considering the potential for energy storage to reduce costs.

The ports studied were:
- JAXPORT Container Port, Blount Island
- US Marine Corps (USMC) Blount Island
- Massport: Conley Container Terminal and Flynn Cruiseport

The evaluation focused on three main areas of port activity:
1. Trucking centers – the electrification of trucks providing port cargo transfer
2. Shore power – powering ships from the grid while at berth
3. Port cargo handling – switching cranes from diesel to electric

Blount Island
Blount Island is on the St. Johns River in Jacksonville, Florida. One side of the island hosts a Jacksonville Port Authority (JAXPORT) container port, and the other side hosts the U.S. Marines Blount Island Command.

Massport
Massport is a port facility in Boston, Massachusetts serving the New England region. It consists of the Conley Container Terminal, the Flynn Cruiseport, the Boston Autoport, and the Boston Logan International Airport.

Trucking Facility Electrification Impact Assessment

Methodology Steps:
- Identifying potential locations for drayage e-truck charging stations
- Projecting e-truck adoption for trucking facilities
- Projecting the number of required chargers and charging profiles in each facility
- Projecting the charging load for different regions
- Charging load are mapped to help utilities understand where concentrated loads may occur in relation to feeders / substations
- Assessing the potential benefits of storage deployment (as a mitigation solution)

JAXPORT Blount Island
Trucking Facilities Linked to Substations

Massport Container Terminal
Distribution Facilities Density Linked to Substations

USMC Blount Island

Shore Power

- **Location of shore power in the US (EPA, 2017)**
- **Shore power allows for a vessel to plug into the local grid while at berth, as opposed to running its auxiliary engine**
- **This reduces emissions, and should provide a cost savings**
- **Shore power installations in the U.S. are concentrated on the West Coast**
- **USMC Blount Island could potentially save $7m/year**

Energy Storage and Port Electrification

By smoothing power consumption over time and reducing peak demand, energy storage can:
- **Help minimize the cost of required transmission and distribution upgrades**
- **Decrease utility demand charges**

This applies to:
- **Crane electrification**
- **Shore power provision**
- **Trucking facility electrification**

Electrification of Cranes

- **Ship to Shore (STS) cranes has a higher contribution to port power consumption (compared to other types of cranes)**
- **STS crane operation cycle has two phases: (1) Ship to Platform (STP) and, (2) Platform to Shore (PTS). Total cycle duration: ~120 seconds**
- **If multiple cranes operate at the same time, they might create huge spikes (each crane around 4MW)**
 - **The large short-lived spikes in demand indicate that ultracapacitor storage could be of great benefit**

Acknowledgements

The authors appreciate the cooperation of USMC Blount Island, JAXPORT, and Massport in this study. The authors gratefully acknowledge Dr. Imre Gyuk of the DOE Storage Program for funding this work.