Motivation

The DOE Office of Electricity views sodium batteries as a priority in pursuing a safe, resilient, and reliable grid. Improvements in solid-state electrolytes are key to realizing the potential of these large-scale batteries.

- NaSICON structure consists of SiO$_4$ or PO$_4$ tetrahedra sharing common corners with ZrO$_6$ octahedra
- Structure forms “tunnels” in three dimensions that can transport interstitial sodium ions
- 3D structure provides higher ionic conductivity than other conductors (β'-alumina), particularly at low temperature
- Lower temperature (cheaper) processing compared to β'-alumina

Objectives

- Identify mechanisms of dendrite initiation and propagation from molten Na electrodes using high-current (100 mA/cm2), one-directional testing.
- Use classical electrochemical methods, such as electrochemical impedance spectroscopy (EIS), to further understand Na|NaSICON interface and detect initial dendrite formation.
- Use interfacial coating to eliminate dendrite formation and identify key properties for effective coatings.

Conclusions and Future Work

- Initially, high current densities (100 mA/cm2) can be achieved in molten Na|NaSICON symmetric cells with a stable voltage profile.
- After some time, the voltage profile becomes noisy.
- EIS can be used to measure the cell impedance and a decrease in impedance corresponds to the increasingly noisy voltage profile.
- NaSICON degradation can occur by both Mode I (pressure-induced cracking) and Mode II (ion-electron recombination) mechanisms.
- Tin coating enables a more stable voltage profile in symmetric cells.

Next Considerations:

- What features (porosity, etc.) cause early degradation?
- How are mechanical properties related to sodium penetration?
- For further details regarding battery performance, see “Low Temperature Molten Sodium Batteries” presentation by Leo Small and Erik Spoerke.

Acknowledgments

This work was done in collaboration with Sandia National Laboratories and was supported through the Energy Storage Program, managed by Dr. Imre Gyuk, within the U.S. Department of Energy’s Office of Electricity. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. SAND2022-12624 C.